
125. 3-Epi-digitoxigenin¹).

Glykoside und Aglykone. 111. Mitteilung²)³)

von H. P. Sigg, Ch. Tamm und T. Reichstein.

(19. V. 53.)

Für Vergleichszwecke wurde 3-Epi-digitoxigenin (V) benötigt. Nach *Hunger & Reichstein* lassen sich Carbonylgruppen in herzaktiven Glykosiden und Aglykonen leicht mit NaBH₄⁵) reduzieren, ohne dass der ungesättigte Lactonring angegriffen wird. Nach *Dauben*

Ultraviolett-Absorptionsspektrum von 3-Epi-digitoxigenin (V) in Alkohol⁶) Maximum bei 217 m μ (log $\varepsilon = 4,20$), berechnet auf $C_{23}H_{34}O_4$ (374,50).

- 1) Auszug aus der Diss. H. P. Sigg, Basel, die demnächst erscheint.
- 2) 110. Mitteilung: O. Schindler & T. Reichstein, Helv. 36, 921 (1953).
- 3) Die mit Buchstaben bezeichneten Fussnoten siehe bei den Formeln.
- 4) A. Hunger & T. Reichstein, B. 85, 635 (1952).
- ⁵) S. W. Chaikin & W. G. Brown, Am. Soc. 71, 122 (1949).
- $^{6})$ Aufgenommen von Herrn Dr. P. Zoller mit einem Unicam- SP-500-Spectrophotometer.

und Mitarbeitern¹) entsteht aus Cholestanon-(3) mit NaBH $_4$ etwa 75 % Cholestanol-(3 β), während die analoge Reduktion von Koprostanon-(3) vorwiegend Koprostanol-(3 α) liefert. Wir reduzierten daher Digitoxigenon (IV) mit NaBH $_4$ und erhielten als einzig fassbares Reduktionsprodukt das gesuchte 3-Epi-digitoxigenin (V) in 75-proz. Ausbeute. Die alkoholische Lösung zeigte das in Fig. 1 angegebene UV.-Absorptionsspektrum, woraus hervorgeht, dass der Butenolidring nicht reduziert wurde. Zur Charakterisierung wurde das Acetat VI und das Formiat VII bereitet. Aus beiden Estern lässt sich das freie 3-Epi-digitoxigenin durch Verseifung mit 1-proz. HCl in Methanol leicht regenerieren.

Ac = CH₃CO—; Fo = HCO—; die Zahlen in eckigen Klammern geben die spez. Drehung für Na-Licht in folgenden Lösungsmitteln an: Me = Methanol, Chf = Chloroform.

- a) A. Windaus & G. Stein, B. 61, 2436 (1928).
- b) S. Rangaswami & T. Reichstein, Pharm. acta Helv. 24, 159 (1949).
- c) K. Meyer & T. Reichstein, Helv. 30, 1508 (1947).
- d) Exper. Teil dieser Arbeit.

Für Vergleichszwecke wurde auch das Digitoxigenin-formiat (III) hergestellt. Es ist erwartungsgemäss viel leichter verseifbar als Digitoxigenin-acetat (II) und liefert mit 1-proz. HCl in Methanol leicht wieder freies Digitoxigenin, während das Acetat II bei analoger Behandlung unverändert blieb. Epi-digitoxigenin zeigt erwartungsgemäss²) eine etwas stärkere Rechtsdrehung als Digitoxigenin und gibt bei der Acetylierung und Formylierung ein positives Inkrement der molekularen Drehung (vgl. Tab. 1).

¹⁾ W. G. Dauben, R. A. Micheli & J. F. Eastham, Am. Soc. 74, 3852 (1952).

²) D. H. R. Barton, vgl. L. F. Fieser & M. Fieser, Natural Products related to Phenanthrene, 3rd Edit., p. 206 (New York 1949).

Substanz	Kon- figura- tion an C-3	Ι (α Ιτ	$[M]_{\mathbf{D}}$	Δ α-β
3-Epi-digitoxigenin (V) Digitoxigenin (I)		$+27^{\circ}\pm3^{\circ}$ (Me) ¹) $+19^{\circ}\pm2^{\circ}$ (Me) ^a)	+ 101° ± 12° + 71° ± 8°	$+30^{\circ}\pm20^{\circ}$
3-Epi-koprostanol	1	$+31^{\circ}\pm1^{\circ}$ (Chf) ²) +28° ±2° (Chf) ³)	$^{+123^{\circ}\pm}_{+109^{\circ}\pm}$ $^{4^{\circ}}_{8^{\circ}}$	+ 14° ± 12°
3-Epi-digitoxigenin-acetat (VI)	α	$+42^{0}\pm1,5^{0}({ m Chf})^{1})$	+175° ± 6°	0.00 1 4 7 0

 $+19^{\circ}\pm3^{\circ}$ (Chf)a-c) + 79°+

 $+47^{\circ}\pm2^{\circ} (Chf)^{1})^{4} + 195^{\circ}\pm$

(Chf)1)

β

α

β

Tabelle 1.

Herr Dr. Chen hatte die Freundlichkeit, 3-Epi-digitoxigenin (V) biologisch an der Katze zu prüfen. Das Präparat war bei intravenöser Infusion in wässerigem Alkohol bis zur Dosierung von 36,76 mg pro kg völlig unwirksam⁵). Dies ist bemerkenswert, denn Digitoxigenin (I) zeigte bei gleicher Prüfung ein geometrisches Mittel der letalen Dosis von $0,459 \pm 0,0363$ mg/kg⁶).

 $+24^{0}+20$

Dem einen von uns (Ch. T.) standen Mittel aus den Arbeitsbeschaffungskrediten des Bundes zur Verfügung, die ihm die Beteiligung an dieser Arbeit ermöglichten.

Experimenteller Teil.

Alle Smp. sind auf dem Kofler-Block bestimmt und korrigiert, Fehlergrenze in verwendeter Ausführung bis 200° etwa \pm 2°, darüber etwa \pm 3°. Substanzproben zur Drehung wurden 1 Std. bei 70° und 0,02 Torr getrocknet, zur Analyse 5 Std. bei 0,01 Torr und 100° über P_2O_5 mit Einwaage im Schweinchen. Übliche Aufarbeitung bedeutet: Eindampfen im Vakuum, Aufnehmen in Chloroform-Äther, Waschen mit verd. HCl, Sodalösung und Wasser, Trocknen über Na_2SO_4 und Eindampfen. Alle Chromatogramme wurden nach der Durchlaufmethode 7) an alkalifreiem Al_2O_3 °) ausgeführt.

3-Epi-digitoxigenin (V). Zu 140 mg Digitoxigenon (IV) (gewonnen aus Digitoxigenin (I) durch Oxydation mit CrO₃c)) vom Smp. 203—205° in 7 cm³ 80-proz. wässerigem Dioxan wurde innert 60 Min. eine Lösung von 50 mg NaBH₄ (15facher Überschuss) in

Digitoxigenin-acetat (II) . .

3-Epi-koprostanol-acetat.

Koprostanol-acetat .

¹⁾ Exp. Teil dieser Arbeit.

²⁾ C. Dorée & J. A. Gardner, Soc. 93, 1625 (1908).

³) H. Grasshof, Z. physiol. Ch. 225, 197 (1934).

⁴⁾ L. Ruzicka & M. W. Goldberg, Helv. 18, 670 (1935), fanden $[\alpha]_D=+43.8^{\circ}\pm1^{\circ}$ (c = 0.20 in Benzol).

⁵) Wir danken Herrn Dr. K. K. Chen, Indianapolis, auch hier bestens für die Überlassung seiner Resultate.

⁶⁾ K. K. Chen, Ann. Rev. of Physiol. 7, 677 (1945).

⁷⁾ T. Reichstein & C. W. Shoppee, Discussions of the Faraday Soc. 1949, Nr. 7, 305.

 $^{^8)}$ $J.\,v.\,Euw,\,A.\,Lardon$ & $T.\,Reichstein,\,$ Helv. 27, 1292, Fussnote 2 (1944), nicht mit Säure gewaschen und reaktiviert bei 185°.

5 cm³ 80-proz. Dioxan zugetropft. Dann wurde 6 Std. bei 20° stehengelassen und anschliessend bei 0° mit 2-n. $\rm H_2SO_4$ vorsichtig auf pH = 3 angesäuert, wobei ein Niederschlag entstand. Das Dioxan wurde, unter allmählicher Zugabe von 25 cm³ Wasser, im Vakuum abdestilliert. Die verbliebene wässerige Lösung wurde siebenmal mit je 50 cm³ Chloroform ausgeschüttelt, die Auszüge zweimal mit je 10 cm³ Wasser gewaschen, über $\rm Na_2SO_4$ getrocknet und eingedampft. Der verbleibende Rückstand (136 mg) wurde in 20 cm³ Methanol gelöst, mit 500 mg p-Mannit und 20 cm³ 0,1-n. $\rm H_2SO_4$ versetzt und 30 Min. unter Rückfluss gekocht. Das Methanol wurde im Vakuum entfernt und die verbleibende saure Lösung fünfmal mit je 50 cm³ Chloroform ausgeschüttelt. Die mit je 5 cm³ Wasser, Sodalösung und Wasser gewaschenen und über $\rm Na_2SO_4$ getrockneten Auszüge gaben beim Eindampfen 135 mg borfreien Rückstand¹). Mehrmaliges Umkristallisieren aus Methanol lieferte 72 mg farblose Prismen, teilweise zu Drusen verwachsen, vom Smp. 274—282°; $\rm [\alpha]_{D}^{22} = +26,8° \pm 3°$ (c = 0,3357 in Methanol).

```
16,75 mg Subst. zu 4,9896 cm³; l=2 dm; \alpha_{\rm D}^{22}=+0,18^{\rm o}\pm0,02^{\rm o} 4,105 mg Subst. gaben 11,052 mg CO<sub>2</sub> und 3,248 mg H<sub>2</sub>O C<sub>23</sub>H<sub>34</sub>O<sub>4</sub> (374,50) Ber. C 73,76 H 9,15% Gef. C 73,47 H 8,85%
```

Farbreaktion mit 84-proz. H_2SO_4 : grünlich (0'), grüngelb (5'), gelb (10'), hell rotbraun mit blauem Rand (30'), blau (2 Std.). Raymond-Reaktion²): positiv (blau-violett).

 $3\cdot E$ pi-digito xigenin-acetat (VI). 133 mg Epi-digitoxigenin (55 mg Kristalle und 63 mg Mutterlaugen aus obigem Versuch, sowie 15 mg Mutterlaugen aus einem Vorversuch) wurden in 5 cm³ abs. Pyridin und 2 cm³ Acetanhydrid 48 Std. bei 20° stehengelassen. Übliche Aufarbeitung gab 170 mg Rohprodukt, das an 5 g Al $_2O_3$ chromatographiert wurde. Die Fraktienen Nr. 3—12 (128 mg, eluiert mit Benzol-Chloroform (9:1)), gaben nach mehrmaligem Umkristallisieren aus Chloroform-Äther-Petroläther 92 mg Blättehen, Smp. 208—210°; [α] $_D^2=+42.5^\circ\pm1.5^\circ$ (c = 1,6906 in Chloroform).

```
17,01 mg Subst. zu 1,0061 cm³; l=1 dm; \alpha_{\rm D}^{22}=+0.719^{\rm o}\pm0.02^{\rm o} 3,966 mg Subst. gaben 10,425 mg CO<sub>2</sub> und 3,069 mg H<sub>2</sub>O C<sub>25</sub>H<sub>36</sub>O<sub>5</sub> (416,54) Ber. C 72,08 H 8,71% Gef. C 71,73 H 8,66%
```

Die Mischprobe mit Digitoxigenin-acetat schmolz bei 182—220°. Farbreaktion mit 84-proz. $\rm H_2SO_4$ gleich wie mit 3-Epi-digitoxigenin.

Aus den restlichen Mutterlaugen (69 mg) wurde nach Behandlung mit Reagenz T von Girard & Sandulesco³) 56 mg ketonfreies Material erhalten, das ein Gemisch von Digitoxigenin-acetat (II) und Epi-digitoxigenin-acetat (VI) darstellte, das sich aber auch nach Chromatographie an ${\rm Al}_2{\rm O}_3$ nicht gut trennen liess. Es wurden nur Gemische der beiden Isomeren, die bei 180—200° schmolzen, erhalten.

Digitoxigenin-formiat (III). 8 cm³ wasserfreie Ameisensäure wurden mit 3,2 cm³ Acetanhydrid gemischt und 6 Std. bei 18° stehengelassen. 60 mg getrocknetes Digitoxigenin (1 Std. H.-V. bei 70°) in 3 cm³ abs. Pyridin wurden bei 0° langsam mit obiger Lösung versetzt und zwei Tage bei 18° stehengelassen. Die übliche Aufarbeitung gab 80 mg Rohprodukt. Aus Methanol-Äther 64 mg Prismen, die nach mehrmaligem Umkristallisieren aus Methanol-Äther und Chloroform-Äther bei 198—201° schmolzen; $[\alpha]_D^{23} = +18,0° \pm 3°$ (c = 0,7673 in Chloroform).

```
7,72 mg Subst. zu 1,0061 cm³; l=1 dm; \alpha_{\rm D}^{23}=+0.138^{\rm o}\pm0.02^{\rm o} 4,379 mg Subst. gaben 11,490 mg CO<sub>2</sub> und 3,312 mg H<sub>2</sub>O C<sub>24</sub>H<sub>34</sub>O<sub>5</sub> (402,50) Ber. C 71,61 H 8,51% Gef. C 71,61 H 8,46%
```

Nachweis von Bor nach F. Feigl, Quantitative Analyse mit Hilfe von Tüpfelreaktionen, S. 340, Leipzig 1938.

²) Ausgeführt nach O. Schindler & T. Reichstein, Helv. 34, 108 (1951).

³⁾ A. Girard & G. Sandulesco, Helv. 19, 1095 (1936).

3-Epi-digitoxigenin-formiat (VII). 45 mg getrocknetes 3-Epi-digitoxigenin wurden wie oben formyliert. Die übliche Aufarbeitung gab 54 mg Rohprodukt. Aus Chloroform-Äther 42 mg Prismen, Smp. 237—239°; $[\alpha]_D^{21} = +41,7^0 \pm 2^0$ (c = 1,249 in Chloroform).

12,47 mg Subst. zu 1,0061 cm³;
$$l=1$$
 dm; $\alpha_{\rm D}^{21}=+0.521^{\rm 0}\pm0.02^{\rm 0}$ 3,922 mg Subst. gaben 10,270 mg CO₂ und 2,980 mg H₂O C₂₄H₂₄O₅ (402,50) Ber. C 71,61 H 8,51% Gef. C 71,46 H 8,50%

Hydrolyse von 3-Epi-digitoxigenin-acetat (VI). 70 mg Acetat vom Smp. 204—209° wurden in 6 cm³ Methanol gelöst, 0,3 cm³ 20-proz. methanolische HCl zugegeben (was eine ca. 1-proz. Lösung ergibt) und die Lösung 18 Std. bei 20° stehengelassen. Unter steter Zugabe von Wasser wurde das Methanol im Vakuum bei 25° entfernt, die verbleibende wässerige Suspension viermal mit je 40 cm³ Chloroform ausgeschüttelt, die Auszüge mit Wasser, Sodalösung und Wasser gewaschen, über Na₂SO₄ getrocknet und eingedampft. Der Rückstand (64 mg) gab aus Methanol 62 mg Prismen vom Smp. 272—282°; $[\alpha]_{\rm D}^{\rm 22}=+27,3°\pm3°$ (c = 0,3657 in Methanol).

18,25 mg Subst. zu 4,9896 cm³; l=2 dm; $\alpha_{\rm D}^{22}=+0,20^{0}\pm0,02^{0}$ Die Mischprobe mit 3-Epi-digitoxigenin (VI) schmolz gleich.

Hydrolyseversuch von Digitoxigenin-acetat (II). 35 mg Acetat vom Smp. 219—223° wurden wie oben mit 1-proz. methanolischer HCl während 18 Std. bei 20° stehengelassen. Die Aufarbeitung gab 33 mg Rohprodukt. Nach dreimaligem Umkristallisieren aus Chloroform-Äther-Petroläther 29 mg Kristalle vom Smp. 219—223°. Die Mischprobe mit dem Ausgangsmaterial schmolz gleich.

Hydrolyse von Digitoxigenin-formiat (III). 15 mg Formiat wurden in 2 cm³ Methanol gelöst, mit 0,33 cm³ einer Lösung von 7,2% HCl in Methanol (ca. 1-proz. methanolische HCl ergebend) versetzt und 16 Std. bei 20° stehengelassen. Aufarbeitung, wie beim Versuch mit Epi-digitoxigenin-acetat beschrieben, gab 15 mg Rohprodukt. Nach mehrmaligem Umkristallisieren aus Chloroform-Äther-Petroläther 10 mg Kristalle vom Smp. 240—243°. Die Mischprobe mit Digitoxigenin (I) schmolz gleich.

Spezifische Drehung von 3-Epi-koprostanol-acetat: $[\alpha]_D^{23}=+47^0\pm 2^0$ (c = 1,0873 in Chloroform).

10,94 mg Subst. zu 1,0061 cm³;
$$l=1$$
 dm; $\alpha_{\mathrm{D}}^{23}=+0.51^{\mathrm{0}}\pm0.02^{\mathrm{0}}$

Spezifische Drehung von Koprostanol-acetat: $[\alpha]_D^{26} = +24^0 \pm 2^0$ (c = 0,9422 in Chloroform).

9,48 mg Subst. zu 1,0061 cm³; l=1 dm; $\alpha_{\rm D}^{26}=+0,227^{\rm 0}\pm0,02^{\rm 0}$

Die Mikroanalysen wurden im Mikrolabor der Organisch-Chemischen Anstalt, Basel, (Leitung $\it E.\ Thommen$) ausgeführt.

Zusammenfassung.

Die Reduktion von Digitoxigenon (IV) mit $NaBH_4$ liefert 3-Epidigitoxigenin (V) in 75-proz. Ausbeute. V wurde durch das Acetat VI und das Formiat VII charakterisiert. VI und VII werden durch 1-proz. methanolische HCl bei 20° vollständig hydrolisiert, während Digitoxigenin-acetat (II) dabei unverändert bleibt. 3-Epi-digitoxigenin (V) zeigte an der Katze keine digitalisartige Wirkung.

Organisch-Chemische Anstalt der Universität, Basel.